Mode-coupling in rotating gravitational collapse of a scalar field
نویسندگان
چکیده
منابع مشابه
Mode-Coupling in Rotating Gravitational Collapse of a Scalar Field
We present an analytic study of the mode-coupling phenomena for a scalar field propagating on a rotating Kerr background. Physically, this phenomena is caused by the dragging of reference frames, due to the black-hole (or star’s) rotation. We find that different modes become mixed during the evolution and the asymptotic late-time tails are dominated by a mode which, in general, has an angular d...
متن کاملMode-Coupling in Realistic Rotating Gravitational Collapse
We analyze the mode-coupling phenomena in realistic rotating gravitational collapse. Physically, this phenomena is caused by the dragging of reference frames, due to the black-hole (or star’s) rotation. It is shown that different modes become coupled during the rotating collapse. As a consequence, the asymptotic late-time tails are dominated by modes which, in general, have an angular distribut...
متن کاملMode-coupling in rotating gravitational collapse: Gravitational and electromagnetic perturbations
We consider the late-time evolution of gravitational and electromagnetic perturbations in realistic rotating Kerr spacetimes. We give a detailed analysis of the mode-coupling phenomena in rotating gravitational collapse. A consequence of this phenomena is that the late-time tail is dominated by modes which, in general, may have an angular distribution different from the original one. In additio...
متن کاملGravitational collapse of massless scalar field and radiation fluid
Several classes of exact solutions to the Einstein field equations coupled with either a massless scalar field or a radiation fluid are given, and their main properties are studied. It is found that some represent the formation of black holes due to the gravitational collapse of the matter fields. When the spacetimes have continuous self-similarity (CSS), the masses of black holes take a scalin...
متن کاملRadiative tail of realistic rotating gravitational collapse
An astrophysically realistic model of wave dynamics in black-hole spacetimes must involve a nonspherical background geometry with angular momentum. We consider the evolution of gravitational (and electromagnetic) perturbations in rotating Kerr spacetimes. We show that a rotating Kerr black hole becomes "bald" slower than the corresponding spherically symmetric Schwarzschild black hole. Moreover...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Physical Review D
سال: 1999
ISSN: 0556-2821,1089-4918
DOI: 10.1103/physrevd.61.024033